abo_giftabo_onlineabo_printabo_studentabo_testangle_leftangle_rightangle_right_filledarrow_big_downarrow_big_down_filledarrow_big_leftarrow_big_left_filledarrow_big_rightarrow_big_right_filledarrow_big_uparrow_big_up_filledarrow_dropdown_downarrow_dropdown_uparrow_small_leftarrow_small_left_filledarrow_small_rightarrow_small_right_filledarrow_stage_leftarrow_stage_left_filledarrow_stage_rightarrow_stage_right_filledcaret_downcaret_upcloseclose_thinclose_thin_filledcontactdownload_thickdownload_thick_filleddownload_thindownload_thin_filledebookeditelement_headlineelement_labelelement_relatedcontentlockmailminuspagepage_filledpagespages_filledphoneplusprintprint_filledquotationmarks_leftquotationmarks_rightsearchsendshareshare_filledshoppingcart_bigshoppingcart_big_filledshoppingcart_headershoppingcart_smallshoppingcart_small_filledsocial_facebooksocial_linkedinsocial_pinterest social_xsocial_xingsocial_youtubesocial_twitteruser_biguser_small

Journal articles

Reset filter
  • Author(s)

  • Language of Publication

  • Published

  • Category

Journal

  • Select allDe-select all
Author(s)TitleJournalIssuePageCategory
Buttignol, Thomaz Eduardo Teixeira; Colombo, Matteo; di Prisco, MarcoLong-term aging effects on tensile characterization of steel fibre reinforced concreteStructural Concrete6/20161082-1093Technical Papers

Abstract

The paper discusses the effect of aging on steel fibre reinforced concrete (SFRC) after 10 years. The aim is to observe the change in mechanical properties, especially of the residual post-cracking tensile strength, due to long-term aging. For this purpose, a comparison between the results of four-point bending tests (4PB) at the age of 1 year and 10 years was carried out and it indicates that aging affects the serviceability post-cracking residual strength, increasing fibre interfacial bond strength. Material classification is performed according to fib Model Code 2010 for 1-year old and 10-year old specimens. The objective is to estimate possible changes in the material class through the years. Three- and four-point bending test results on 10-year old specimens are described, together with a comparison between those tests. Both tests showed very similar results; slightly higher values were obtained with the three-point bending (3PB) test. The tensile constitutive law is obtained according to fib Model Code 2010 and is compared with results of direct tensile tests on cylindrical specimens and Double Edge Wedge Splitting tests on prismatic specimens. A plane section (PS) approach adopting the tensile constitutive law is applied to predict the bending behaviour in terms of nominal stress against crack mouth opening displacement and it is compared with the bending test results.

x
Zimmermann, Thomas; Lehký, David; Strauss, AlfredCorrelation among selected fracture-mechanical parameters of concrete obtained from experiments and inverse analysesStructural Concrete6/20161094-1103Technical Papers

Abstract

The correlations among selected parameters of concrete were investigated for concrete mixes of the strength classes C20/25, C25/30, C30/37, C40/50 and C50/60. The focus was laid on correlations between basic mechanical parameters such as compressive strength, tensile strength and modulus of elasticity as well as parameters related to concrete fracture, represented here by specific fracture energy. Laboratory tests examining the fracture behaviour and mechanical properties were carried out in order to determine the fundamental concrete parameters. In particular, standard compression tests on test cubes and three-point bending tests on beams with central edge notch were performed. Additional material parameters were identified using the inverse analysis technique. Finally, correlation factors between different parameters of concrete were identified using the rank-order correlation method.

x
Sakai, Koji; Shibata, Toshio; Kasuga, Akio; Nakamura, HikaruSustainability design of concrete structuresStructural Concrete6/20161114-1124Technical Papers

Abstract

Concrete has become the most used material on Earth over the 200 years following the invention of modern cement. The design concept has undergone a transition from the allowable-stress design method, limit-state design method, to the performance-based design method, in response to the evolution of materials, sophistication of experimental facilities, and advancement of computation skills. From the issues on resources and energy depletion, global warming, and resilience etc., it is necessary to create a new design framework taking into consideration the required performance beyond the conventional concept, in order to construct infrastructure and buildings in a more rational way. In other words, we should construct a design system that sets the continued existence of the diverse and rich global environment as its most important criterion of value. In this paper, we review the design and technology system developed in the past and discuss it based on the above-mentioned new viewpoint, while constructing and presenting a new design system for concrete structures, focusing mainly on the concept of sustainability, which is regarded as the most important factor in achieving conservation of Earth's rich resources as well as sound socio-economic activities of humankind in the future, and we examine its feasibility.

x